Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Antioxidants (Basel) ; 12(12)2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-38136156

RESUMEN

Background: Preeclampsia (PE) is a hypertensive disorder of pregnancy that is associated with substantial morbidity and mortality for the mother and fetus. Reduced nitric oxide bioavailability and oxidative stress contribute to the maternal and fetal pathophysiology of PE. In this study, we evaluated the efficacy of a novel dual-function nitric oxide donor/redox modulator, AKT-1005, in reducing PE symptoms in a mouse model of PE. Method: The potential therapeutic effect of AKT-1005 was tested in an animal model of Ad.sFlt-1-induced hypertension, proteinuria and glomerular endotheliosis, a model of PE. Pregnant Ad.sFlt-1-overexpressing CD1 mice were randomized into groups administered AKT-1005 (20 mg/kg) or a vehicle using a minipump on gd11 of pregnancy, and the impact on blood pressure and renal and placental damage were assessed. Results: In healthy female mice, ex vivo treatment of resistance vessels with AKT-1005 induced vasorelaxation, and 6 days of treatment in vivo did not significantly alter blood pressure with or without pregnancy. When given for 6 days during pregnancy along with Ad.sFlt-1-induced PE, AKT-1005 significantly increased plasma nitrate levels and reduced hypertension, renal endotheliosis and plasma cystatin C. In the placenta, AKT-1005 improved placental function, with reduced oxidative stress and increased endothelial angiogenesis, as measured by CD31 staining. As such, AKT-1005 treatment attenuated the Ad.sFlt-1-induced increase in placental and free plasma soluble endoglin expression. Conclusions: These data suggest that AKT-1005 significantly attenuates the sFlt-1-induced PE phenotypes by inhibiting oxidative stress, the anti-angiogenic response, and increasing NO bioavailability. Additional research is warranted to investigate the role of AKT-1005 as a novel therapeutic agent for vascular disorders such as preeclampsia.

2.
Kidney Int ; 104(6): 1150-1163, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37783445

RESUMEN

Nicotinamide adenine dinucleotide (NAD+) levels decline in experimental models of acute kidney injury (AKI). Attenuated enzymatic conversion of tryptophan to NAD+ in tubular epithelium may contribute to adverse cellular and physiological outcomes. Mechanisms underlying defense of tryptophan-dependent NAD+ production are incompletely understood. Here we show that regulation of a bottleneck enzyme in this pathway, quinolinate phosphoribosyltransferase (QPRT) may contribute to kidney resilience. Expression of QPRT declined in two unrelated models of AKI. Haploinsufficient mice developed worse outcomes compared to littermate controls whereas novel, conditional gain-of-function mice were protected from injury. Applying these findings, we then identified hepatocyte nuclear factor 4 alpha (HNF4α) as a candidate transcription factor regulating QPRT expression downstream of the mitochondrial biogenesis regulator and NAD+ biosynthesis inducer PPARgamma coactivator-1-alpha (PGC1α). This was verified by chromatin immunoprecipitation. A PGC1α - HNF4α -QPRT axis controlled NAD+ levels across cellular compartments and modulated cellular ATP. These results propose that tryptophan-dependent NAD+ biosynthesis via QPRT and induced by HNF4α may be a critical determinant of kidney resilience to noxious stressors.


Asunto(s)
Lesión Renal Aguda , Ácido Quinolínico , Animales , Ratones , Lesión Renal Aguda/genética , Factores Nucleares del Hepatocito , Riñón , NAD , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Triptófano
3.
Biology (Basel) ; 12(9)2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37759628

RESUMEN

BACKGROUND: Preeclampsia (PE) is a severe, life-threatening complication during pregnancy (~5-7%), and no causative treatment is available. Early aberrant spiral artery remodeling is associated with placental stress and the release of oxygen radicals and other reactive oxygen species (ROS) in the placenta. This precedes the production of anti-angiogenic factors, which ultimately leads to endothelial and trophoblast damage and the key features of PE. We tested whether a novel dual-function redox modulator-AKT-1005-can effectively reduce placental oxidative stress and alleviate PE symptoms in vitro. METHOD: Isolated human villous explants were exposed to hypoxia and assessed to determine whether improving cell-redox function with AKT-1005 diminished ROS production, mitochondrial stress, production of the transcription factor HIF1A, and downstream anti-angiogenic responses (i.e., sFLT1, sEng production). MitoTEMPO was used as a reference antioxidant. RESULTS: In our villous explant assays, pretreatment with AKT-1005 reduced mitochondrial-derived ROS production, reduced HIF-1A, sFLT1, and sEng protein expression, while increasing VEGF in hypoxia-exposed villous trophoblast cells, with better efficiency than MitoTEMPO. In addition, AKT-1005 improved mitochondrial electron chain enzyme activity in the stressed explant culture. CONCLUSIONS: The redox modulator AKT-1005 has the potential to intervene with oxidative stress and can be efficacious for PE therapy. Future studies are underway to assess the in vivo efficacy of HMP.

4.
Antioxidants (Basel) ; 12(8)2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37627573

RESUMEN

Preeclampsia (PE) is a pregnancy-specific syndrome affecting 5-7% of patients. There is no effective treatment available. Early abnormal placental development is associated with oxidative stress (OS) and a release of reactive oxygen species (ROS) in the placenta. This phenomenon leads to downstream signaling, Hypoxia Inducible Factor 1A (HIF1A) stabilization and transcription of the anti-angiogenic factors soluble fms-like tyrosine kinase 1 (sFLT1) and soluble endoglin (sEng), which are known to cause endothelial and trophoblast dysfunction and cardinal features of PE: hypertension, proteinuria and, in severe cases, eclampsia. We tested whether 3-(Hydroxymethyl)-1-oxy-2,2,5,5-tetramethylpyrrolidine (HMP)-a nitroxide-type antioxidant molecule-can reduce placental OS and mitigate PE symptoms in vitro. We induced OS in human trophoblast (HTR-8/SVneo) cells with hydrogen peroxide (H2O2) and assessed whether modulating cell redox function with HMP reduces cell injury, mitochondrial stress and HIF1A and sFLT1 production. Pre-treatment with HMP reduced mitochondrial-derived ROS production, restored LC3B expression and reduced HIF1A and sFLT1 expression in H2O2-exposed HTR-8/SVneo trophoblast cells. HMP improved the mitochondrial electron chain enzyme activity, indicating that a reduction in OS alleviates mitochondrial stress and also reduces anti-angiogenic responses. In reducing placental trophoblast OS, HMP presents a potential novel therapeutic approach for the treatment of PE. Future investigation is warranted regarding the in vivo use of HMP.

5.
Circ Res ; 132(6): 674-689, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36815487

RESUMEN

BACKGROUND: Preeclampsia is a syndrome of high blood pressure (BP) with end organ damage in late pregnancy that is associated with high circulating soluble VEGF receptor (sFlt1 [soluble Fms-like tyrosine kinase 1]). Women exposed to preeclampsia have a substantially increased risk of hypertension after pregnancy, but the mechanism remains unknown, leaving a missed interventional opportunity. After preeclampsia, women have enhanced sensitivity to hypertensive stress. Since smooth muscle cell mineralocorticoid receptors (SMC-MR) are activated by hypertensive stimuli, we hypothesized that high sFlt1 exposure in pregnancy induces a postpartum state of enhanced SMC-MR responsiveness. METHODS: Postpartum BP response to high salt intake was studied in women with prior preeclampsia. MR transcriptional activity was assessed in vitro in sFlt1-treated SMC by reporter assays and PCR. Preeclampsia was modeled by transient sFlt1 expression in pregnant mice. Two months post-partum, mice were exposed to high salt and then to AngII (angiotensin II) and BP and vasoconstriction were measured. RESULTS: Women exposed to preeclampsia had significantly enhanced salt sensitivity of BP verses those with a normotensive pregnancy. sFlt1 overexpression during pregnancy in mice induced elevated BP and glomerular endotheliosis, which resolved post-partum. The sFlt1 exposed post-partum mice had significantly increased BP response to 4% salt diet and to AngII infusion. In vitro, SMC-MR transcriptional activity in response to aldosterone or AngII was significantly increased after transient exposure to sFlt1 as was aldosterone-induced expression of AngII type 1 receptor. Post-partum, SMC-MR-KO mice were protected from the enhanced response to hypertensive stimuli after preeclampsia. Mechanistically, preeclampsia mice exposed to postpartum hypertensive stimuli develop enhanced aortic stiffness, microvascular myogenic tone, AngII constriction, and AngII type 1 receptor expression, all of which were prevented in SMC-MR-KO littermates. CONCLUSIONS: These data support that sFlt1-induced vascular injury during preeclampsia produces a persistent state of enhanced sensitivity of SMC-MR to activation. This contributes to postpartum hypertension in response to common stresses and supports testing of MR antagonism to mitigate the increased cardiovascular risk in women after PE.


Asunto(s)
Hipertensión , Preeclampsia , Humanos , Embarazo , Femenino , Ratones , Animales , Preeclampsia/etiología , Preeclampsia/metabolismo , Receptor 1 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo , Receptores de Mineralocorticoides/genética , Aldosterona , Músculo Liso/metabolismo
6.
Dis Model Mech ; 14(8)2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34350953

RESUMEN

People of recent sub-Saharan African ancestry develop kidney failure much more frequently than other groups. A large fraction of this disparity is due to two coding sequence variants in the APOL1 gene. Inheriting two copies of these APOL1 risk variants, known as G1 and G2, causes high rates of focal segmental glomerulosclerosis (FSGS), HIV-associated nephropathy and hypertension-associated end-stage kidney disease. Disease risk follows a recessive mode of inheritance, which is puzzling given the considerable data that G1 and G2 are toxic gain-of-function variants. We developed coisogenic bacterial artificial chromosome (BAC) transgenic mice harboring either the wild-type (G0), G1 or G2 forms of human APOL1. Expression of interferon gamma (IFN-γ) via plasmid tail vein injection results in upregulation of APOL1 protein levels together with robust induction of heavy proteinuria and glomerulosclerosis in G1/G1 and G2/G2 but not G0/G0 mice. The disease phenotype was greater in G2/G2 mice. Neither heterozygous (G1/G0 or G2/G0) risk variant mice nor hemizygous (G1/-, G2/-) mice had significant kidney injury in response to IFN-γ, although the heterozygous mice had a greater proteinuric response than the hemizygous mice, suggesting that the lack of significant disease in humans heterozygous for G1 or G2 is not due to G0 rescue of G1 or G2 toxicity. Studies using additional mice (multicopy G2 and a non-isogenic G0 mouse) supported the notion that disease is largely a function of the level of risk variant APOL1 expression. Together, these findings shed light on the recessive nature of APOL1-nephropathy and present an important model for future studies.


Asunto(s)
Nefropatía Asociada a SIDA , Apolipoproteína L1 , Animales , Apolipoproteína L1/genética , Apolipoproteína L1/metabolismo , Cromosomas Artificiales Bacterianos/metabolismo , Mutación con Ganancia de Función , Predisposición Genética a la Enfermedad , Humanos , Ratones , Ratones Transgénicos
7.
Thyroid ; 31(9): 1335-1358, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33107403

RESUMEN

Background: BRAFV600E acts as an ATP-dependent cytosolic kinase. BRAFV600E inhibitors are widely available, but resistance to them is widely reported in the clinic. Lipid metabolism (fatty acids) is fundamental for energy and to control cell stress. Whether and how BRAFV600E impacts lipid metabolism regulation in papillary thyroid carcinoma (PTC) is still unknown. Acetyl-CoA carboxylase (ACC) is a rate-limiting enzyme for de novo lipid synthesis and inhibition of fatty acid oxidation (FAO). ACC1 and ACC2 genes encode distinct isoforms of ACC. The aim of our study was to determine the relationship between BRAFV600E and ACC in PTC. Methods: We performed RNA-seq and DNA copy number analyses in PTC and normal thyroid (NT) in The Cancer Genome Atlas samples. Validations were performed by using assays on PTC-derived cell lines of differing BRAF status and a xenograft mouse model derived from a heterozygous BRAFWT/V600E PTC-derived cell line with knockdown (sh) of ACC1 or ACC2. Results:ACC2 mRNA expression was significantly downregulated in BRAFV600E-PTC vs. BRAFWT-PTC or NT clinical samples. ACC2 protein levels were downregulated in BRAFV600E-PTC cell lines vs. the BRAFWT/WT PTC cell line. Vemurafenib increased ACC2 (and to a lesser extent ACC1) mRNA levels in PTC-derived cell lines in a BRAFV600E allelic dose-dependent manner. BRAFV600E inhibition increased de novo lipid synthesis rates, and decreased FAO due to oxygen consumption rate (OCR), and extracellular acidification rate (ECAR), after addition of palmitate. Only shACC2 significantly increased OCR rates due to FAO, while it decreased ECAR in BRAFV600E PTC-derived cells vs. controls. BRAFV600E inhibition synergized with shACC2 to increase intracellular reactive oxygen species production, leading to increased cell proliferation and, ultimately, vemurafenib resistance. Mice implanted with a BRAFWT/V600E PTC-derived cell line with shACC2 showed significantly increased tumor growth after vemurafenib treatment, while vehicle-treated controls, or shGFP control cells treated with vemurafenib showed stable tumor growth. Conclusions: These findings suggest a potential link between BRAFV600E and lipid metabolism regulation in PTC. BRAFV600E downregulates ACC2 levels, which deregulates de novo lipid synthesis, FAO due to OCR, and ECAR rates. ShACC2 may contribute to vemurafenib resistance and increased tumor growth. ACC2 rescue may represent a novel molecular strategy for overcoming resistance to BRAFV600E inhibitors in refractory PTC.


Asunto(s)
Acetil-CoA Carboxilasa/genética , Metabolismo Energético/genética , Lipogénesis/genética , Mitocondrias/genética , Mutación , Proteínas Proto-Oncogénicas B-raf/genética , Cáncer Papilar Tiroideo/genética , Neoplasias de la Tiroides/genética , Acetil-CoA Carboxilasa/metabolismo , Animales , Antineoplásicos/farmacología , Línea Celular Tumoral , Bases de Datos Genéticas , Resistencia a Antineoplásicos , Metabolismo Energético/efectos de los fármacos , Ácidos Grasos/metabolismo , Predisposición Genética a la Enfermedad , Humanos , Lipogénesis/efectos de los fármacos , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/enzimología , Mitocondrias/patología , Oxidación-Reducción , Fenotipo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Proteínas Proto-Oncogénicas B-raf/metabolismo , Cáncer Papilar Tiroideo/tratamiento farmacológico , Cáncer Papilar Tiroideo/enzimología , Cáncer Papilar Tiroideo/patología , Neoplasias de la Tiroides/tratamiento farmacológico , Neoplasias de la Tiroides/enzimología , Neoplasias de la Tiroides/patología , Vemurafenib/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Hypertension ; 76(3): 875-883, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32654553

RESUMEN

Elevated circulating sFLT-1 (soluble fms-like tyrosine kinase) and low levels of its ligand, PlGF (placental growth factor), are key characteristics of preeclampsia. However, it is unclear if the low levels of plasma PlGF noted during preeclampsia are due to decreased placental production of PlGF or due to binding of PlGF by increased circulating sFLT-1. Here, we describe a biochemical procedure to dissociate PlGF-sFLT-1 complex ex vivo and when used in conjunction with an immunoassay platform, demonstrate a method to measure total and free PlGF in human blood samples. Using this method, we noted that plasma free PlGF levels were significantly lower in preeclampsia (N=22) than in nonhypertensive controls (N=24; mean, 314 versus 686 pg/mL, P<0.05), but total PlGF levels were not different (mean, 822 versus 800 pg/mL, P=0.49). In contrast, total sFLT-1 levels were significantly higher in preeclampsia than in nonhypertensive controls (mean, 16 957 versus 3029 pg/mL, P<0.01) and sFLT-1 levels correlated with bound PlGF levels (bound PlGF=total PlGF-free PlGF) in these samples (r2=0.68). We confirmed these findings in an independent cohort of subjects (N=49). Furthermore, we did not detect any difference in PlGF mRNA by quantitative polymerase chain reaction or in PlGF protein expression by immunohistochemistry in preeclamptic placentas when compared with nonhypertensive controls. In contrast, sFLT-1 mRNA and protein levels were upregulated in placentas from women with preeclampsia. Taken together with prior studies, our results provide evidence that decrease in circulating PlGF noted during preeclampsia is largely mediated by excess circulating sFLT-1.


Asunto(s)
Factor de Crecimiento Placentario , Placenta/metabolismo , Preeclampsia/sangre , Receptor 1 de Factores de Crecimiento Endotelial Vascular , Adulto , Biomarcadores/sangre , Biomarcadores/metabolismo , Femenino , Humanos , Inmunoensayo/métodos , Inmunohistoquímica , Neovascularización Fisiológica , Factor de Crecimiento Placentario/sangre , Factor de Crecimiento Placentario/metabolismo , Preeclampsia/diagnóstico , Embarazo , Receptor 1 de Factores de Crecimiento Endotelial Vascular/sangre , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo
10.
Placenta ; 99: 8-15, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32716845

RESUMEN

INTRODUCTION: Placenta Accreta Spectrum (PAS) disorder is one of the leading causes of maternal morbidity and mortality due to uncontrollable hemorrhage. The greatest risk factor for development of PAS is prior uterine surgery, frequently cesarean delivery. Despite considerable clinical knowledge, animal models of PAS are lacking. To address this, we used two surgical approaches to create uterine scarring in peripartum and non-pregnant CD-1 mice. Il10-/- mice, with a pro-inflammatory phenotype were also studied. METHODS: In peripartum mice, a hysterotomy was performed to simulate a cesarean section. The second approach utilized endometrial curettage in non-pregnant mice. Sham-operated mice served as control. Following recovery, females were mated. On gestation day 16, pregnant females were euthanized, and the uterus was excised. Tissue was fixed, sectioned, and stained with H&E or cytokeratin immunohistochemistry. The cytokeratin-positive area extending beyond the trophoblast giant cells was measured by quantitative image analysis. Disruption of the circular (inner myometrium) smooth muscle was scored semi-quantitatively. RESULTS: In surgically scarred mice, trophoblast invasion was deeper relative to control mice, regardless of surgical method. The myometrium in experimental mice showed significant disruption compared to sham controls. Results from CD-1 and Il10-/- mice were similar, with the latter showing more severe pathology. DISCUSSION: While further refinement of surgical method is required, our data indicate that surgical uterine scarring in mice represents a promising model of PAS.


Asunto(s)
Modelos Animales de Enfermedad , Placenta Accreta/patología , Placenta/patología , Trofoblastos/patología , Útero/patología , Animales , Femenino , Ratones , Miometrio/patología , Miometrio/cirugía , Placenta/cirugía , Embarazo , Útero/cirugía
11.
Immunobiology ; 225(2): 151895, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31843260

RESUMEN

Signal transduction by the Toll-like receptors (TLRs) is a key component of innate immunity against many pathogens and also underlies a large burden of human diseases. Therefore, the mechanisms and regulation of signaling from the TLRs are of considerable interest. Here we seek to determine the molecular mechanism by which TLR2 and TLR4, members of the Toll-like receptor family, are activated by bacterial LPS, hyperoxia, and zymosan respectively. Our central hypothesis is that the oxidation state of cysteine thiols on the ectodomain of TLR2 and TLR4 are critical for pathogen-initiated intracellular signaling as well in hyperoxia. Cysteine thiols of TLR4 and its co-receptor MD2 have been shown to aid binding between the two molecules and also bacterial LPS binding to the receptor complex. We extend these findings by demonstrating the oxidation of free thiols on the ectodomain of hTLR4, after exposure to LPS or hyperoxia suggesting that the cysteines on the ectodomain of TLR4 could form intra- or intermolecular disulfide bonds. We also demonstrated blockade of intracellular signaling from TLR4 and TLR2 by thiol-modifying compounds which suggest a novel therapeutic intervention for sepsis, hyperoxia-induced cell injury and yeast infection. In these experiments CHO-3E10, HEK293 cells expressing hTLR2 or hTLR4 and mouse peritoneal macrophages cells were pretreated with cell impermeable maleimides to alkylate thiols on the extracellular domain of TLRs, cells were then exposed to LPS, hyperoxia or zymosan. In all of these models, we detected decreased intracellular signaling from TLR2 or TLR4. Furthermore, incubation with phenyl arsine oxide - which forms stable complexes with vicinal cysteine residues - prevented LPS induced HEK293/hTLR4 intracellular signaling which was reversed by DMPS. Sequence analysis of different TLRs revealed Leucine-Rich Repeat C-terminal (LRRCT) domain that contains 4 conserved cysteines. Further work is required to pinpoint the role of each cysteine in receptor dimerization, pathogen binding, hyperoxia modulation, and intracellular signaling.


Asunto(s)
Cisteína/metabolismo , Transducción de Señal/fisiología , Compuestos de Sulfhidrilo/metabolismo , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 4/metabolismo , Animales , Células CHO , Línea Celular , Cricetulus , Células HEK293 , Humanos , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C3H , Oxidación-Reducción/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
12.
Kidney Int Rep ; 4(12): 1735-1741, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31844810

RESUMEN

INTRODUCTION: Soluble fms-like tyrosine kinase 1 (sFLT1) is a splice variant of the vascular endothelial growth factor (VEGF) receptor lacking the transmembrane and cytoplasmic domains and acts as a powerful antagonist of VEGF signaling. Plasma sFLT1 levels are higher in patients with chronic kidney disease (CKD) and correlate with renal dysfunction. The source of plasma sFLT1 in CKD is unclear. METHODS: Fifty-two renal biopsies were studied for sFLT1 expression using immunohistochemistry and evaluated on a 0-4 grading scale of positive cells within inflammatory infiltrates. These included drug-induced interstitial nephritis (6); allografts (12), with polyomavirus nephritis (3); diabetes mellitus (10); lupus glomerulonephritis (6); pauci-immune vasculitis (7); IgA nephropathy (6); and miscellaneous CKD (5). RESULTS: Forty-seven biopsies had inflammatory infiltrates of which 37 had sFLT1-positive cells: of these biopsies, 3 were grade 4, i.e., had cells that constituted more than 50% of the inflammatory infiltrate, 9 were grade 3 (25%-50%), 5 were grade 2 (10%-25%), 3 were grade 1 (10%), and 17 were grade 0.5 (<10%). There was a robust correlation (r2 = 0.89) between degree of inflammation and sFLT1-positive cells. CD68/sFLT1 co-immunostaining studies indicated that sFLT1-positive cells were histiocytes. The surrounding capillary network was reduced. CONCLUSION: sFLT1-positive histiocytes are generally part of the inflammatory infiltrates noted in CKD and are particularly abundant in forms of interstitial nephritis. Their presence promotes an anti-angiogenic state locally in the tubulointerstitium that could inhibit capillary repair, contribute to peritubular capillary loss, and enhance fibrosis in CKD.

13.
Hypertens Pregnancy ; 38(3): 193-199, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31291799

RESUMEN

The immune complement system protects against pathogens; however, excess activation results in disease like hemolytic uremic syndrome, a clinical imitator of preeclampsia. Vascular endothelial factor (VEGF) protects against aberrant complement activation and is inhibited by soluble fms-like tyrosine kinase-1 (sFLT1) in other organs. We hypothesize that sFLT1 promotes complement-mediated placental damage through VEGF inhibition in preeclampsia. Objective: Quantify placental complement activity and sFLT1 expression in preeclampsia, and the subgroup of preeclampsia with hemolysis elevated liver enzymes low platelets (HELLP) syndrome. Methods: Placental complement activation marker C4d, membrane attack complex (MAC), and sFLT1 expression was quantified using immunofluores cence microscopy. Results: Placentas from 18 controls, 25 preeclampsia, including 6 cases of HELLP syndrome were identified. Placental C4d expression was greater in PE (median 6.4 [IQR: 5.1, 8.3]) compared to controls (4.4 [3.6, 5.5]; p = 0.003). MAC expression was also increased in preeclampsia compared to controls (6.5 [5.8, 8.7]; 5.4 [2.9, 5.9], p = 0.001). Placental sFLT1 expression was also higher in preeclampsia (p <0.0001). C4d and MAC were strongly correlated with sFLT1 levels in the placenta (R = 0.72; p < 0.0001 and R = 0.59; p = 0.01, respectively). Complement and sFLT1 expression was elevated in HELLP compared to preeclampsia without laboratory abnormalities, but this difference did not reach statistical significance. Conclusion: Increased placental complement activation and damage was seen in preeclampsia and correlates with sFLT1 expression. Our findings support the importance of the complement pathway in preeclampsia.


Asunto(s)
Activación de Complemento/fisiología , Placenta/inmunología , Preeclampsia/inmunología , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo , Adulto , Estudios de Casos y Controles , Femenino , Síndrome HELLP/inmunología , Síndrome HELLP/metabolismo , Humanos , Placenta/metabolismo , Preeclampsia/metabolismo , Embarazo , Trofoblastos/inmunología , Trofoblastos/metabolismo
14.
JCI Insight ; 52019 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-30870143

RESUMEN

Because injured mitochondria can accelerate cell death through the elaboration of oxidative free radicals and other mediators, it is striking that proliferator gamma coactivator 1-alpha (PGC1α), a stimulator of increased mitochondrial abundance, protects stressed renal cells instead of potentiating injury. Here we report that PGC1α's induction of lysosomes via transcription factor EB (TFEB) may be pivotal for kidney protection. CRISPR and stable gene transfer showed that PGC1α knockout tubular cells were sensitized to the genotoxic stressor cisplatin whereas transgenic cells were protected. The biosensor mtKeima unexpectedly revealed that cisplatin blunts mitophagy both in cells and mice. PGC1α not only counteracted this effect but also raised basal mitophagy, as did the downstream mediator nicotinamide adenine dinucleotide (NAD+). PGC1α did not consistently affect known autophagy pathways modulated by cisplatin. Instead RNA sequencing identified coordinated regulation of lysosomal biogenesis via TFEB. This effector pathway was sufficiently important that inhibition of TFEB or lysosomes unveiled a striking harmful effect of excess PGC1α in cells and conditional mice. These results uncover an unexpected effect of cisplatin on mitophagy and PGC1α's exquisite reliance on lysosomes for kidney protection. Finally, the data illuminate TFEB as a novel target for renal tubular stress resistance.


Asunto(s)
Lesión Renal Aguda/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Cisplatino/toxicidad , Túbulos Renales/metabolismo , Lisosomas/metabolismo , Mitocondrias/metabolismo , Biogénesis de Organelos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/metabolismo , Animales , Autofagia/efectos de los fármacos , Autofagia/genética , Sistemas CRISPR-Cas , Técnicas de Transferencia de Gen , Túbulos Renales/citología , Ratones , Ratones Noqueados , Ratones Transgénicos , Mitofagia/genética , NAD/metabolismo , Estrés Oxidativo/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Análisis de Secuencia de ARN
15.
Am J Pathol ; 189(1): 104-114, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30315766

RESUMEN

Although the cause of preeclampsia, a pregnancy complication with significant maternal and neonatal morbidity, has not been fully characterized, placental ischemia attributable to impaired spiral artery remodeling and abnormal secretion of antiangiogenic factors are thought to be important in the pathogenesis of the disease. Placental ischemia could impair trophoblast mitochondrial function and energy production, leading to the release of reactive oxygen species (ROS). ROS have been shown to stabilize hypoxia-inducible factor (HIF)-1α, which, in turn, may induce transcription of antiangiogenic factors, soluble fms-like tyrosine kinase 1 (sFLT1), and soluble endoglin in trophoblasts. Herein, we tested whether the angiogenic imbalance and oxidative stress in the preeclamptic placenta may be prevented by improving mitochondrial function. First, to evaluate the cause-effect relationship between mitochondrial function and sFLT1 production, a human trophoblast primary cell culture model was established in which hypoxia induced mitochondrial ROS production and concurrent sFLT1 increase. Second, treatment with AP39, a novel mitochondria-targeted hydrogen sulfide donor, prevented ROS production, reduced HIF-1α protein levels, and diminished sFLT1 production. Finally, AP39, a modulator of mitochondrial bioenergetics enhanced cytochrome c oxidase activity, reversed oxidative stress and antiangiogenic response in hypoxic trophoblasts. These results suggest that placental hypoxia induces ROS production, HIF-1α stabilization, and sFLT1 up-regulation; these pathophysiological alterations can be attenuated by mitochondrial-targeted antioxidants.


Asunto(s)
Metabolismo Energético , Mitocondrias , Compuestos Organofosforados/farmacología , Estrés Oxidativo , Preeclampsia , Tionas/farmacología , Trofoblastos , Inhibidores de la Angiogénesis/metabolismo , Hipoxia de la Célula/efectos de los fármacos , Células Cultivadas , Complejo IV de Transporte de Electrones/metabolismo , Endoglina/metabolismo , Metabolismo Energético/efectos de los fármacos , Femenino , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Mitocondrias/metabolismo , Mitocondrias/patología , Compuestos Organofosforados/química , Estrés Oxidativo/efectos de los fármacos , Preeclampsia/tratamiento farmacológico , Preeclampsia/metabolismo , Preeclampsia/patología , Embarazo , Especies Reactivas de Oxígeno/metabolismo , Tionas/química , Trofoblastos/metabolismo , Trofoblastos/patología , Receptor 1 de Factores de Crecimiento Endotelial Vascular/biosíntesis
16.
Nat Biotechnol ; 2018 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-30451990

RESUMEN

Preeclampsia is a placentally induced hypertensive disorder of pregnancy that is associated with substantial morbidity and mortality to mothers and fetuses. Clinical manifestations of preterm preeclampsia result from excess circulating soluble vascular endothelial growth factor receptor FLT1 (sFLT1 or sVEGFR1) of placental origin. Here we identify short interfering RNAs (siRNAs) that selectively silence the three sFLT1 mRNA isoforms primarily responsible for placental overexpression of sFLT1 without reducing levels of full-length FLT1 mRNA. Full chemical stabilization in the context of hydrophobic modifications enabled productive siRNA accumulation in the placenta (up to 7% of injected dose) and reduced circulating sFLT1 in pregnant mice (up to 50%). In a baboon preeclampsia model, a single dose of siRNAs suppressed sFLT1 overexpression and clinical signs of preeclampsia. Our results demonstrate RNAi-based extrahepatic modulation of gene expression with nonformulated siRNAs in nonhuman primates and establish a path toward a new treatment paradigm for patients with preterm preeclampsia.

17.
Am J Pathol ; 188(10): 2147-2154, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30253844

RESUMEN

There is a temporal window from the time diabetes is diagnosed to the appearance of overt kidney disease during which time the disease progresses quietly without detection. Currently, there is no way to detect early diabetic nephropathy (EDN). Herein, we performed an unbiased assessment of gene-expression analysis of postmortem human kidneys to identify candidate genes that may contribute to EDN. We then studied one of the most promising differentially expressed genes in both kidney tissue and blood samples. Differential transcriptome analysis of EDN kidneys and matched nondiabetic controls showed alterations in five canonical pathways, and among them the complement pathway was the most significantly altered. One specific complement pathway gene, complement 7 (C7), was significantly elevated in EDN kidney. Real-time PCR confirmed more than a twofold increase of C7 expression in EDN kidneys compared with controls. Changes in C7 gene product level were confirmed by immunohistochemistry. C7 protein levels were elevated in proximal tubules of EDN kidneys. Serum C7 protein levels were also measured in EDN and control donors. C7 levels were significantly higher in EDN serum than control serum. This latter finding was independently confirmed in a second set of blood samples from a previously collected data set. Together, our data suggest that C7 is associated with EDN, and can be used as a molecular target for detection and/or treatment of EDN.


Asunto(s)
Complemento C7/metabolismo , Nefropatías Diabéticas/diagnóstico , Adolescente , Adulto , Anciano , Complemento C7/genética , Nefropatías Diabéticas/genética , Diagnóstico Precoz , Femenino , Marcadores Genéticos/genética , Humanos , Riñón/metabolismo , Masculino , Persona de Mediana Edad , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/metabolismo , Regulación hacia Arriba/genética , Regulación hacia Arriba/fisiología , Adulto Joven
18.
Hepatology ; 68(4): 1519-1533, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29631342

RESUMEN

Tubular dysfunction is an important feature of renal injury in hepatorenal syndrome (HRS) in patients with end-stage liver disease. The pathogenesis of kidney injury in HRS is elusive, and there are no clinically relevant rodent models of HRS. We investigated the renal consequences of bile duct ligation (BDL)-induced hepatic and renal injury in mice in vivo by using biochemical assays, real-time polymerase chain reaction (PCR), Western blot, mass spectrometry, histology, and electron microscopy. BDL resulted in time-dependent hepatic injury and hyperammonemia which were paralleled by tubular dilation and tubulointerstitial nephritis with marked upregulation of lipocalin-2, kidney injury molecule 1 (KIM-1) and osteopontin. Renal injury was associated with dramatically impaired microvascular flow and decreased endothelial nitric oxide synthase (eNOS) activity. Gene expression analyses signified proximal tubular epithelial injury, tissue hypoxia, inflammation, and activation of the fibrotic gene program. Marked changes in renal arginine metabolism (upregulation of arginase-2 and downregulation of argininosuccinate synthase 1), resulted in decreased circulating arginine levels. Arginase-2 knockout mice were partially protected from BDL-induced renal injury and had less impairment in microvascular function. In human-cultured proximal tubular epithelial cells hyperammonemia per se induced upregulation of arginase-2 and markers of tubular cell injury. CONCLUSION: We propose that hyperammonemia may contribute to impaired renal arginine metabolism, leading to decreased eNOS activity, impaired microcirculation, tubular cell death, tubulointerstitial nephritis and fibrosis. Genetic deletion of arginase-2 partially restores microcirculation and thereby alleviates tubular injury. We also demonstrate that BDL in mice is an excellent, clinically relevant model to study the renal consequences of HRS. (Hepatology 2018; 00:000-000).


Asunto(s)
Lesión Renal Aguda/metabolismo , Arginina/metabolismo , Síndrome Hepatorrenal/patología , Túbulos Renales/patología , Óxido Nítrico Sintasa/metabolismo , Lesión Renal Aguda/patología , Lesión Renal Aguda/fisiopatología , Animales , Biomarcadores/metabolismo , Biopsia con Aguja , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Síndrome Hepatorrenal/mortalidad , Síndrome Hepatorrenal/fisiopatología , Humanos , Inmunohistoquímica , Túbulos Renales/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Distribución Aleatoria , Medición de Riesgo , Sensibilidad y Especificidad , Índice de Severidad de la Enfermedad , Tasa de Supervivencia
19.
Nephron ; 138(4): 303-309, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29268263

RESUMEN

BACKGROUND: Delayed renal graft function (DGF) contributes to the determination of length of hospitalization, risk of acute rejection, and graft loss. Existing tools aid the diagnosis of specific DGF etiologies such as antibody-mediated rejection, but markers of recovery have been elusive. The peroxisome proliferator gamma co-activator-1-alpha (PGC1α) is highly expressed in the renal tubule, regulates mitochondrial biogenesis, and promotes recovery from experimental acute kidney injury. OBJECTIVES: We aimed to determine the association between renal allograft PGC1α expression and recovery from delayed graft function. METHODS: We retrospectively analyzed patients undergoing renal transplantation at a single center from January 1, 2008 to June 30, 2014. PGC1α expression was assessed by immunostaining and ultrastructural characteristics by transmission electron microscopy. Of 34 patients who underwent renal biopsy for DGF within 30 days of transplant, 21 were included for analysis. RESULTS: Low PGC1α expression was associated with a significantly longer time on dialysis after transplant (median of 35.5 vs. 16 days, p < 0.05) and a significantly higher serum creatinine (sCr) at 4 weeks after transplantation among those who discontinued dialysis (5 vs. 1.65 mg/dL, p < 0.0001). Low PGC1α expression was not associated with higher sCr at 12 weeks after transplantation. Ultrastructural characteristics including apical membrane blebbing and necrotic luminal debris were not informative regarding clinical outcomes. CONCLUSIONS: These data suggest that higher PGC1α expression is associated with faster and more complete recovery from DGF. Mitochondrial biogenesis may be a therapeutic target for DGF. Larger studies are needed to validate these findings.


Asunto(s)
Funcionamiento Retardado del Injerto/metabolismo , Trasplante de Riñón/métodos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Adulto , Anciano , Biomarcadores , Biopsia , Funcionamiento Retardado del Injerto/patología , Diálisis , Femenino , Humanos , Riñón/patología , Fallo Renal Crónico/metabolismo , Fallo Renal Crónico/cirugía , Masculino , Persona de Mediana Edad , Mitocondrias/patología , Estudios Retrospectivos
20.
Methods Mol Biol ; 1608: 19-26, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28695500

RESUMEN

Poly(ADP-ribosyl)ation of proteins is a posttranslational modification mediated by poly(ADP-ribose) polymerases (PARPs) that use NAD+ as substrate to form the negatively charged polymer of poly(ADP-ribose) (PAR). After DNA damage, PARP-1 is responsible for approximately 90% of the total cellular PARylation activity. Numerous studies showed activation of PARP-1 in various conditions associated with oxidative and nitrosative stress, such as ischemia-reperfusion injury, diabetes mellitus, and inflammation, and also proved the beneficial effects of PARP inhibitors. Several pharmacological inhibitors of PARP moved toward clinical testing for a variety of indications, including cardioprotection and malignant tumors, and in late 2014, olaparib became the first PARP inhibitor approved for human use for the therapy of ovarian cancer. These advances necessitate the detection of PARP activation in human tissues. In the present chapter, we review specific methods used to detect PARP activation in human circulating leukocytes and in human tissue sections.


Asunto(s)
Biopsia/métodos , Inmunohistoquímica/métodos , Leucocitos/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Animales , Daño del ADN/genética , Humanos , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli Adenosina Difosfato Ribosa/metabolismo , Procesamiento Proteico-Postraduccional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...